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Abstract

Graph Neural Networks (GNNs) obtain tremendous suc-
cess in modeling relational data. Still, they are prone to
adversarial attacks, which are massive threats to applying
GNNs to risk-sensitive domains. Existing defensive meth-
ods neither guarantee performance facing new data/tasks
or adversarial attacks nor provide insights to understand
GNN robustness from an architectural perspective. Neural
Architecture Search (NAS) has the potential to solve this
problem by automating GNN architecture designs. Never-
theless, current graph NAS approaches lack robust design
and are vulnerable to adversarial attacks. To tackle these
challenges, we propose a novel Robust Neural Architecture
search framework for GNNs (G-RNA). Specifically, we de-
sign a robust search space for the message-passing mech-
anism by adding graph structure mask operations into the
search space, which comprises various defensive operation
candidates and allows us to search for defensive GNNs. Fur-
thermore, we define a robustness metric to guide the search
procedure, which helps to filter robust architectures. In this
way, G-RNA helps understand GNN robustness from an ar-
chitectural perspective and effectively searches for optimal
adversarial robust GNNs. Extensive experimental results on
benchmark datasets show that G-RNA significantly outper-
forms manually designed robust GNNs and vanilla graph
NAS baselines by 12.1% to 23.4% under adversarial attacks.

1. Introduction
Graph Neural Networks are well-known for modeling

relational data and are applied to various downstream real-
world applications like recommender systems [37], knowl-
edge graph completion [25], traffic forecasting [6], drug
production [45], etc. Meanwhile, like many other deep neu-
ral networks, GNNs are notorious for their vulnerability
under adversarial attacks [33], especially in risk-sensitive
domains, such as finance and healthcare. Since GNNs model
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node representations by aggregating the neighborhood in-
formation, an attacker could perform attacks by perturbing
node features and manipulating relations among nodes [55].
For example, in the user-user interaction graph, a fraudster
may deliberately interact with other important/fake users
to mislead the recommender system or fool credit scoring
models [36].

A series of defense methods on graph data have
been developed to reduce the harm of adversarial attacks.
Preprocessing-based approaches like GCN-SVD [8] and
GCN-Jaccard [38] conduct structure cleaning before training
GNNs, while attention-based models like RGCN [51] and
GNN-Guard [46] learn to focus less on potential perturbed
edges. However, these methods rely on prior knowledge of
the attacker. For example, GCN-SVD leverages the high-
rank tendency of graph structure after Nettack [53], and
GCN-Jaccard depends on the homophily assumption on the
graph structure. As a result, current approaches may fail to
adapt to scenarios when encountering new data and tasks
or when new attack methods are proposed. Additionally,
previous methods largely neglect the role of GNN architec-
tures in defending against adversarial attacks, lacking an
architectural perspective in understanding GNN robustness.

In order to reduce human efforts in neural architecture
designs, Neural Architecture Search (NAS) has become in-
creasingly popular in both the research field and industry.
Though NAS has the potential of automating robust GNN
designs, existing graph NAS methods [1, 10, 24, 49, 50] are
inevitably susceptible to adversarial attacks since they do
not consider adversarial settings and lack robustness de-
signs [48]. Therefore, how to adopt graph NAS to search
for optimal robust GNNs in various environments, and in
the meantime, fill the gap of understanding GNN robustness
from an architectural perspective, remains a huge challenge.

To address the aforementioned problems and to under-
stand GNN robustness from an architectural perspective, we
propose a novel Robust Neural Architecture search frame-
work for Graph neural networks (G-RNA), which is the first
attempt to exploit powerful graph neural architecture search
in robust GNNs, to our best knowledge. Specifically, we
first design a novel, expressive, and robust search space with
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Figure 1. The overall framework of G-RNA. Given a clean graph, the supernet built upon our robust search space is trained in a single-path
one-shot way. Then, the attack proxy produces several adversarial samples based on the clean graph and we search for robust GNNs with the
proposed robustness metric. Finally, we evaluate the optimal robust GNN on graphs perturbed by the attacker.

graph structure mask operations. The green part in Fig. 1
shows the fine-grained search space. The graph structure
mask operations cover important robust essences of graph
structure and could recover various existing defense meth-
ods as well. We train the supernet built upon our designed
search space in a single-path one-shot way [14]. Second, we
propose a robustness metric that could properly measure the
architecture’s robustness. Based on the clean graph, an at-
tack proxy produces several adversarial samples. We search
robust GNNs using our robustness metric with clean and
generated adversarial samples. A simple illustration of the
robustness metric is shown in the yellow part in Fig. 1. Af-
ter searching for the optimal robust GNN architecture with
the evolutionary algorithm, we retrain the top-selected ro-
bust architectures from scratch and perform evaluations. Our
contributions are summarized as follows:

• We develop a robust neural architecture search framework
for GNNs, which considers robust designs in graph neural
architecture search for the first time to the best of our
knowledge. Based on this framework, we can understand
adversarial robustness for GNNs from an architectural
perspective.

• We propose a novel robust search space by designing de-
fensive operation candidates to automatically select the
most appropriate defensive strategies when confronting
perturbed graphs. Besides, we design a robustness met-
ric and adopt an evolutionary algorithm together with a
single-path one-shot graph NAS framework to search for
the optimal robust architectures.

• Extensive experimental results demonstrate the efficacy of
our proposed method. G-RNA outperforms state-of-the-art

robust GNNs by 12.1% to 23.4% on benchmark datasets
under heavy poisoning attacks.

2. Related Work

2.1. Adversarial Robustness on Graph Data

Despite the wide success of GNNs in various applica-
tions [43, 44, 47], GNNs are shown vulnerable to adversarial
attacks [2–4,33,39,53], i.e., slight perturbations to graph can
lead to sharp performance decrease. Following the literature,
adversarial attacks have various taxonomies according to
the attacker’s knowledge (white-box attack and black-box
attack), perturbation type (structure attack and feature at-
tack), attack stage (evasion attack and poisoning attack), and
targeted nodes (targeted attack and non-targeted attack).

In response to adversarial attacks, several defensive mod-
els have been proposed to enhance the robustness of GNNs.
Graph pre-processing methods identify and rectify potential
structural perturbations before the GNN model training. For
example, with the assumption of feature smoothness, GCN-
Jaccard [38] removes edges that have a low Jaccard simi-
larity. Observing the high-rank tendency of the adjacency
matrix under Nettack, GCN-SVD [8] reconstructs the adja-
cency matrix via its low-rank approximation. Graph attention
methods aim to learn fewer attention weights on suscepti-
ble edges/features. For example, RGCN [51] uses Gaussian
distribution for hidden layer node representations and calcu-
lates attention based on their variance. Pro-GNN [20] jointly
learns graph structure and model parameters by keeping a
low-rank and sparse adjacency matrix as well as feature
smoothness. GNN-Guard [46] learns to focus more on edges
between similar nodes and pruning edges between unrelated
nodes. VPN [19] defenses by re-weighting edges from graph



powering considering r-hop neighbors. Besides, graph cer-
tificate robustness methods [18, 35] provide a theoretical
guarantee for graphs to be certified as robust under perturba-
tion budgets. However, this branch is out of the scope of this
work and we leave the comparison as a future work.

All previous studies rely heavily on manual designs and
thus cannot adapt to new data, tasks, or adversarial attacks.
Besides, existing methods neglect the inherent robustness of
GNN architectures. On the contrary, our proposed method
with specifically designed search space on graph structure
can automatically search for the optimal robust GNN for
different data and tasks.

2.2. Graph Neural Architecture Search

Neural Architecture Search (NAS) is a proliferate re-
search direction that automatically searches for high-
performance neural architectures and reduces the human
efforts of manually-designed architectures. NAS on graph
data is challenging because of the non-Euclidean graph
property and special neural architectures [42, 48]. Graph-
NAS [10] uses the recurrent network as the controller to
generate GNN architectures and adopts reinforcement learn-
ing to search for optimal architectures. In order to conduct
an efficient search, differentiable NAS approaches [14, 26]
jointly optimize the model weights and architecture parame-
ters. DSS [24] proposes a differentiable one-shot graph NAS
and dynamically updates the search space. SANE [49] also
utilizes a differentiable search algorithm and builds GNN
architectures with the Jumping Knowledge Network (JK-
Net) backbone [41]. GNAS [1] reconstructs GNNs with the
designed GNN Paradigm and learns the optimal message-
passing depth as well. GASSO [30] uses graph structure
learning as a denoising process in the differentiable architec-
ture searching process. Graph NAS is also used in complex
graph data such as heterogeneous graphs [7] and temporal
graphs [29]. However, the existing graph NAS methods do
not consider robustness against adversarial attacks.

2.3. Robust Neural Architecture Search

Robust neural architecture search exploits NAS to search
for adversarially robust neural architectures. Since there is
no related work for robust NAS on graph data, we review two
remotely related papers on computer vision. RobNets [13]
is the first work to explore architecture robustness. Through
one-shot NAS, RobNets finetune architecture candidates
via adversarial training and then sample more robust archi-
tectures. DSRNA [16] proposes two differentiable metrics
which help to search robust architectures by a differentiable
search algorithm. Our work is neither based on adversarial
training nor adopts continuous relaxation for architecture pa-
rameters. To conclude, our work differs in that we consider
a disparate search space tailored for graph data and leverage
a different search algorithm.

3. Preliminaries
3.1. Graph Neural Networks

Let G = (A,X) denote a graph with N nodes, where
A ∈ RN×N is the adjacency matrix and X ∈ RN×D0 is the
corresponding feature matrix. For node i, its neighborhood
is denoted as N (i).

Graph Neural Networks take the graph data as input and
output node/graph representations to perform downstream
tasks like node classification and graph classification. Typi-
cally, for node classification tasks with C labels, we calcu-
late:

zi = (fα (A,X))i , (1)

where zi ∈ RC is the prediction vector for node i,
fα denotes the graph neural network based on architec-
ture α. The design of GNNs could be divided into intra-
layer design, inter-layer design, and learning configura-
tions [42]. Intra-layer design often follows the message-
passing paradigm [11]: nodes representation is updated by
aggregating neighborhood information. A general formula
for updating node representation in GNNs is denoted as

h
(l)
i = σ

(
W(l) Comb

(
h
(l−1)
i ,Aggr(e

(l)
ij h

(l−1)
j , j ∈ Ñ (i))

))
,

(2)

where h(l)
i denotes the node representation for node i in the

l-th hidden layer, e(l)ij is the correlation coefficient between
node i and j, Ñ (i) = {i} ∪ N (i) represents the neighbor-
hood of node i with the self-loop, Aggr(·) is the function
to aggregate neighborhood information, Comb(·) aims for
combining self- and neighbor-information, and σ(·) is the
activation function.

Besides the GNN layer design, how to connect different
hidden layers is also critical. Some GNNs directly use the last
hidden layer output as the prediction, while pre-processing
layers, post-processing layers, and skip connections could
also be added [22]. As for learning configurations, they are
hyper-parameters for training GNNs like the learning rate,
the optimizer, etc.

3.2. Graph Neural Architecture Search

In general, graph NAS could be formulated as the follow-
ing bi-level optimization problem:

α∗ = argmax
α∈O

Accval(W
∗(α),α) (3)

s. t. W ∗(α) = argmin
W

Ltrain(W ,α), (4)

where Eq. (3) is the upper-level optimization problem to find
the best architecture α∗ in the search space O, and Eq. (4) is
the lower-level problem to calculate optimal model weights
W for one particular architecture α. Accval represents the



prediction accuracy on the validation set and Ltrain is the
classification cross-entropy loss on the training set.

Existing graph NAS methods [1, 10, 12, 48, 50] design
their search space following the message-passing scheme
in Eq. (1). The most commonly used correlation coefficient
operations are provided in Appendix B.2. NAS methods can
search all components in Eq. (1) such as the aggregation
function, correlation coefficients, and activation functions
as well as hyper-parameters like hidden size and learning
configurations. In this paper, we mainly consider searching
for architectural designs.

4. Robust Graph Neural Architecture Search
In this section, we first formulate the problem of graph

robust NAS. Then, we introduce our novel and expressive
search space with defensive operation candidates, namely
graph structure masks. Based on the designed search space,
we build a supernet containing all possible architectures and
train it in a single-path one-shot way. Finally, we introduce
our proposed robustness metric and describe the search pro-
cess exploiting the evolutionary algorithm.

4.1. Problem formulation

Given a search space O, we aim to find the optimal archi-
tecture α∗ ∈ O with both high prediction accuracy and high
adversarial robustness. We formulate the problem of robust
neural architecture search for GNNs as:

α∗ = argmax
α∈O

ACCval(α) + λR(α), (5)

where R(·) is the robustness metric, and λ is a hyper-
parameter balancing the model accuracy and robustness.

4.2. Search Space for Robust GNNs

We design a fine-grained search space following the
message-passing paradigm. In total, there are six adjustable
components in our GNN architecture: the graph structure
mask, the nodes correlation coefficient, the neighbor aggre-
gator, the combine function, the skip connection, and the
layer aggregator. The first four components belong to the
intra-layer operations, while the rest two components are
inter-layer operations.
Intra-layer Operations. Inside the l-th message-passing
layer, the defensive operation D ∈ OD is firstly adopted to
construct a graph structure mask and reconstruct the graph
structure:

M(l) = D(A(l−1)),A(l) = A⊙M(l) (6)

where M(l) = {mij} is the graph structure mask matrix
and A(l) denotes the graph structure in the l-th layer. ⊙
is the Hadamard product and A(0) = A. Each element
mij ∈ [0, 1] is the mask score between node i and node

Table 1. Graph structure mask operations OD . The detailed denota-
tion is introduced in Appendix B.1.

OD Formula

Identity M(l) = A(l−1)

LRA
A(l−1) = U(l−1)S(l−1)(V(l−1))T ,

M(l) = U
(l−1)
r S

(l−1)
r (V

(l−1)
r )T

NFS m
(l)
ij =

{
0, if a

(l−1)
ij > 0 and Jij < τ

a
(l−1)
ij , otherwise

NIE m
(l)
ij = βm

(l−1)
ij + (1− β)α̂

(l)
ij

VPO M(l) =
∑V

v=1 θv(A
(l−1))v

j where mij = 0 indicates a complete edge pruning and
mij = 1 means no modification to the original edge. The
defensive operation aims to assign fewer weights to potential
perturbed edges.

Inspired by the success of current defensive ap-
proaches [33], we conclude the properties of operations on
graph structure for robustness and design representative de-
fensive operations in our search space accordingly. In this
way, we can choose the most appropriate defensive strategies
when confronting perturbed graphs. To our best knowledge,
this is the first time the search space to be designed with a
specific purpose to enhance the robustness of GNNs. Specifi-
cally, we include five graph structure mask operations in the
search space. Identity keeps the same graph structure as the
previous layer. Low Rank Approximation (LRA) reconstructs
the adjacency matrix in the l-th layer from the top-r compo-
nents of singular value decomposition from adjacency matrix
in the previous layer. Node Feature Similarity (NFS) deletes
edges that have small Jaccard similarities among node fea-
tures. Neighbor Importance Estimation (NIE) updates mask
values with a pruning strategy based on quantifying the rele-
vance among nodes. Variable Power Operator (VPO) forms
a variable power graph from the original adjacency matrix
weighted by the parameters of influence strengths.

Moreover, more operations like graph structure learn-
ing [52] could be integrated into the graph structure mask
operations. The formula for mask operations is shown in Ta-
ble 1. We limit LRA and NFS in the first layer (only for
pre-processing) and exploit the other three operations for all
layers. It is worth mentioning that the graph structure mask
candidates could be easily extended to other methods that
deal with the graph structure, like denoising methods. Mask
operations will not occlude the later message-passing pro-
cess. They could be seen as orthogonal operations to other
operations like the correlation coefficient.

For the other three components in the intra-layer, our
choices for correlation coefficients follow the literature sum-
marized in Table 4 in Appendix. Based on the masked graph



Table 2. The six components in search space and corresponding
candidate operations.

Component Candidate Operations

OD Identity, LRA, NFS, VPO, NIE

Oe
Identity, GCN, GAT, GAT-Sym, Cos,
Linear, Gene-Linear

Oaggr Sum, Mean, Max

Ocomb Identity, GIN, SAGE

Oskip Identity, Zero

Olayer Concat, Max, LSTM

structure A(l) and correlation coefficients {e(l)ij }, a neighbor
aggregator Aggr ∈ Oaggr is used to aggregate neighborhood
representations. Afterwards, a combine function Comb ∈
Ocomb merges self- and neighbor-message. Here, we explore
two typical approaches to combine self-representation and
neighbor-message, namely GraphSAGE [15] and GIN [40].
GraphSAGE conducts different feature transformations for
node representation and neighborhood information. GIN first
performs weighted sum for self- and neighbor-message, then
uses multi-layer perceptron to improve GNN’s expressive
power. After combining messages, the activation function
σ(·) is applied. Overall, the hidden representation for node i
in the l-th layer is calculated as

h
(l)
i = σ

(
W(l) Comb

(
h
(l−1)
i ,Aggr(m

(l)
ij e

(l)
ij h

(l−1)
j , j ∈ Ñ (i))

))
.

(7)
The node representation is initialized as node features, i.e.,
h(0) = X.
Inter-layer Operations. Following the idea of JK-Net [41]
and SANE [49], we aggregate node representations in in-
termediate layers via the layer aggregator Layer Aggr ∈
Olayer. The skip operation Skip ∈ Oskip decides the skip
connection to the final layer aggregator.

zi = Layer Aggr
(

Skip(h(1)
i ), ...,Skip(h(L)

i )
)
, (8)

where L is the maximum number of message-passing layers.
With the JK-Net backbone, we choose the optimal model
depth by setting a maximal depth. For example, if we set
L = 4 and the skip operations are [Idenity, Zero, Idenity,
Zero], then the selected optimal number of message-passing
layers is 3. After obtaining the final node representations, we
add several fully connected layers to conduct classification.

We summarize all components and their candidate opera-
tions in Table 2. Our search space is expressive and, more
importantly, has improved defense capability. As shown
in Table 5 in Appendix, our search space could recover
some classic manually designed GNNs and state-of-the-art
robust GNNs like GCN-SVD, GCN-Jaccard, GNN-Guard,
and VPN.

Supenet Training. With the proposed search space, we
construct a supernet and train it in a single-path one-shot
way [14]. The supernet we built contains all possible archi-
tectures based on our search space, also called the one-shot
model. In the supernet, each architecture behaves as a sin-
gle path. Unlike graph NAS methods such as GNAS [1]
or DSS [24] that use continuous relaxation for architecture
parameters, we train the supernet via uniform single path
sampling [14]. During the training process, we uniformly
sample one path to update weights each time. Afterward,
we search for optimal architectures through the evolutionary
algorithm without further training steps.

4.3. Measuring Robustness

This part will introduce how to measure the architecture’s
robustness and the specific search process using the evolu-
tionary algorithm with our robustness metric.

Intuitively, the performance of a robust GNN should not
deteriorate too much when confronting various perturbed
graph data. Let T∆ denote the attacker of the graph data with
perturbation budgets ∆. We define the robustness metric as

R(A, f) = −EA′

[
1

N

N∑
i=1

DKL

(
f(A)i||f(A′)i

)]
,A′ = T∆(A),

(9)
where f indicates the GNN, f(A)i is the probability pre-

diction vector for node i and DKL(p||q) =
∑

i pi log
pi

qi
denotes the Kullback-Leibler (KL) divergence between two
distribution p and q. Here, we use KL distance to measure
the prediction difference given clean and perturbed data.
The choice of our attack proxy T varies from simple ran-
dom attack [5] or DICE [54] to advanced attack methods
like Mettack [54] or Nettack [53]. Within the same pertur-
bation budgets ∆, our attack proxy generates T perturbed
graph structure {A′

t}Tt=1. Eq. (9) could be approximately
computed as

R(A, f) ≈ − 1

TN

T∑
t=1

N∑
i=1

(DKL(f(A)i||f(A′
t)i)) . (10)

A larger R(A, f) indicates a smaller distance between the
prediction of clean data and the perturbed data, and conse-
quently, more robust GNN architectures.
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Figure 2. Evaluation of the robustness metricR. (a) A histogram
for the robustness metric in log scale. (b) The relationship between
the robustness metric and accuracy decreases (%) under attacks.



In order to illustrate the effectiveness of the proposed
robustness metric, we randomly choose 300 architectures
and calculate their robustness metric value and evaluate their
performance decrease after 5% structural perturbations in
the Cora dataset (the experimental details are described in
Sec. 5.2). Fig. 2a displays the distribution of R in log scale
while Fig. 2b shows the mean accuracy decrease for different
R intervals. The accuracy decrease could be regarded as a
ground-truth measurement of the actual robustness. From
Fig. 2b, we could see that the mean accuracy decrease has
a negative correlation with respect to the robustness metric.
When the robustness metric is relatively small, the accuracy
may be reduced by as large as 10%. However, when the
robustness metric is large, the accuracy decrease shrinks to
about 3.5%. This phenomenon indicates that our robustness
metric could successfully filter robust architectures.
Evolutionary Search Algorithm. In our work, we adopt an
evolutionary algorithm to search for optimal robust graph
architectures with the proposed robustness metric. Instead
of training each candidate architecture from scratch, we
leverage the evolutionary algorithm only for inference and
search. The weights for all architectures are fixed as those
learned in the supernet training phase. In one search epoch,
we select top-k robust candidates via the fitness function
ACCval(α)+λR(α). Crossover and mutation are followed
to generate children architectures from population candi-
dates. We show the search algorithm in Appendix B.4.

5. Experiments
In this section, we conduct experiments to verify our

proposed method by evaluating the selected architecture on
perturbed graphs. Also, we visualize the performance for
diverse operations to better understand GNN architecture’s
robustness. Additional experimental results including de-
fensive performance under targeted attack, evaluation on
heterophily graphs, and sensitivity analysis for the hyper-
parameter λ in our proposed robustness metric could be
found in Appendix C. The details of the experimental setting
are deferred to the Appendix D.

5.1. Semi-supervised Node Classification Task

In the semi-supervised node classification task, we per-
form non-targeted poisoning structural attacks adopting Met-
tack [54] and evaluate GNN robustness based on perturbed
graphs. We vary the proportion of changed edges from 0%
to 25% and calculate the retrained accuracy on perturbed
graphs. For each setting, we experiment 10 times and re-
port the average results and the standard deviation. The final
defense results are summarized in Table 3. More informa-
tion on searched architectures by G-RNA under attacks is
provided in Appendix C.3.

Overall, our G-RNA successfully outperforms all base-
lines under adversarial attacks. We could see an apparent in-

crease in perturbation performance when confronting heavily
poisoning attacks (e.g. when the proportion of changed edges
is 15% or more). For instance, the defense performance of
G-RNA under 25% structural perturbations exceeds that of
vanilla GCN by 23.4%, 20.9%, and 12.1%, respectively. For
NAS-based methods, optimal architectures searched on clean
data are evaluated on both clean and perturbed graphs to test
their robustness and conduct a fair comparison. We could see
that there does exist a trade-off between architecture accu-
racy and robustness. Though GraphNAS shows impressive
results on clean graphs, its vulnerability under adversarial
attacks is also obvious, e.g. GraphNAS’s performance under
adversarial attacks is even worse than that of classic GNNs
sometimes. Thus, it’s necessary to make Graph NAS more
robust. In CiteSeer, the performance for G-RNA under 20%
and 25% structural perturbations are almost twice that of
GraphNAS, which shows the strong defense ability of our
method.
Ablation study on robustness metric. We add an ablation
study by removing the robustness metric (denoted as G-
RNA w/o rob). Our full G-RNA shows better performance
compared to G-RNA w/o rob on all datasets under attacks,
demonstrating the effectiveness of our proposed robustness
metric.
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Figure 3. Comparison with GCN-NoGraph. G-RNA is the only
method that consistently outperforms GCN-NoGraph.

Comparison with not using structures. When the graph
structure is heavily poisoned, aggregating neighbor mes-
sages by the message-passing paradigm may not be reliable.
As a result, we compare our method with GCNs not using
edges, named GCN-NoGraph [20], i.e., a two-layer MLP on
node features. Notice that the performance exceeding GCN-
NoGraph indicates an effective graph structure, while that
below GCN-NoGraph implies an informationless or confus-
ing graph structure for GNNs. Fig. 3 shows the comparison
with GCN-NoGraph. For all comparing methods, only the
performance of G-RNA always outperforms GCN-NoGraph.
GCN-Jaccard performs well for small perturbations but fails
to defend against large perturbations. Also, we could see an
obvious drop for GCN and GraphNAS when the perturb rate
goes beyond 15% for both datasets.

5.2. Understand Operation Robustness

For understanding the robustness of various GNN compo-
nents, we randomly sample 300 architectures and evaluate



Table 3. The results of node classification accuracy (mean±std, in percentages) under non-targeted attacks (Mettack). Bold numbers indicate
the best performance. “-” indicates the result is unavailable due to the high time complexity of the model.

Dataset Model Proportion of changed edges (%)

0 5 10 15 20 25

Cora

Vanilla GNN

GCN 84.28±0.25 78.00±1.20 70.31±1.24 56.97±1.20 48.56±2.66 43.83±1.47
GCN-JK 84.38±0.38 74.63±0.60 67.32±0.80 53.26±1.17 45.29±2.49 38.63±1.03

GAT 84.30±0.65 78.56±1.33 70.18±1.43 58.39±2.27 49.35±1.55 42.40±1.02
GAT-JK 84.16±0.36 74.30±1.35 68.07±1.12 54.54±2.55 51.20±1.51 43.29±1.47

Robust GNN

RGCN 84.60±0.37 75.92±1.01 72.94±0.40 59.97±0.50 52.50±0.38 46.47±0.91
GCN-Jaccard 83.64±0.76 77.07±0.61 74.07±0.59 68.92±0.80 63.57±0.87 56.14±1.45

Pro-GNN 84.64±0.59 79.59±0.83 73.73±0.76 62.10±1.65 54.89±2.03 48.98±1.89
DropEdge 83.35±1.23 77.84±0.30 70.96±0.44 57.13±0.50 49.70±0.72 43.51±1.13
PTDNet 83.70±0.43 78.49±0.43 70.94±0.34 54.39±0.81 45.80±0.63 41.32±0.67

Graph NAS

GraphNAS 82.77±0.40 72.97±2.34 57.12±5.31 44.50±1.48 37.21±3.79 31.96±1.68
GASSO 84.11±0.34 77.69±1.10 68.50±0.64 56.61±0.90 51.87±0.79 46.05±2.01

G-RNA w/o rob 84.29±0.40 77.39±1.38 67.61±1.73 53.56±3.00 48.57±1.85 41.20±1.53
G-RNA 83.81±0.39 80.45±0.74 75.16±0.89 73.52±0.86 70.6±1.43 67.23±1.66

CiteSeer

Vanilla GNN

GCN 72.35±0.49 63.48±0.45 56.94±1.29 55.01±0.91 43.73±1.15 40.47±0.77
GCN-JK 72.14±0.36 62.16±0.51 54.25±1.30 50.61±0.93 40.06±1.11 35.07±1.51

GAT 71.75±0.71 61.47±1.33 53.92±1.29 49.68±2.74 41.31±2.95 37.25±2.26
GAT-JK 71.52±0.90 63.90±0.38 57.16±0.53 52.80±1.08 44.26±0.87 39.63±0.69

Robust GNN

RGCN 72.43±0.41 63.30±0.33 55.90±0.47 53.83±0.31 43.65±0.72 39.99±0.46
GCN-Jaccard 71.03±0.45 64.56±0.75 57.57±0.74 55.31±0.82 50.17±0.66 45.78±0.43

Pro-GNN 71.74±0.76 66.29±0.64 64.60±0.86 63.96±1.48 62.46±1.12 55.73±2.04
DropEdge 71.84±0.21 63.33±0.70 55.41±0.77 50.81±0.93 40.61±0.92 37.46±0.61
PTDNet 72.87±0.46 64.08±0.78 57.03±0.37 54.04±0.75 41.81±0.63 38.93±0.66

Graph NAS

GraphNAS 72.79±0.22 61.01±0.36 53.55±1.29 55.98±12.01 39.06±6.79 36.90±4.76
GASSO 71.08±0.29 61.31±0.53 52.17±0.70 50.43±0.87 43.72±1.10 36.84±0.55

G-RNA w/o rob 72.57±0.29 65.48±1.29 56.59±1.76 55.81±1.59 48.53±2.20 43.76±2.23
G-RNA 71.32±0.82 68.71±1.20 65.84±1.20 65.29±1.35 62.58±0.99 61.33±1.35

PubMed

Vanilla GNN

GCN 86.35±0.15 82.70±0.13 80.56±0.16 77.85±0.17 75.85±0.18 73.68±0.22
GCN-JK 87.07±0.12 82.76±0.15 81.56±0.18 80.22±0.38 79.14±0.44 77.31±0.24

GAT 85.28±0.20 81.02±0.31 79.58±0.16 76.39±0.43 74.41±0.20 72.22±0.24
GAT-JK 85.72±0.14 82.37±0.10 80.60±0.23 78.50±0.15 76.39±0.14 74.02±0.25

Robust GNN

RGCN 86.64±0.08 82.90±0.18 80.73±0.19 77.86±0.17 75.89±0.15 73.74±0.22
GCN-Jaccard 87.11±0.04 83.95±0.06 82.30±0.08 80.16±0.07 78.83±0.13 76.86±0.17

Pro-GNN - - - - - -
PTDNet 83.87±0.24 74.32±0.44 68.80±0.34 67.32±0.18 66.50±0.12 65.21±0.34

DropEdge 83.93±0.10 83.24±0.12 82.33±0.15 81.06±0.18 79.21±0.14 76.88±0.28

Graph NAS

GraphNAS 87.26±0.04 83.56±0.08 80.00±3.98 77.86±2.59 72.97±3.88 68.05±2.26
GASSO 86.27±0.12 84.15±0.15 83.18±0.21 82.56±0.25 81.73±0.36 83.25±1.26

G-RNA w/o rob 87.18±0.07 82.59±0.14 80.29±0.17 78.11±0.24 75.98±0.33 73.60±0.25
G-RNA 87.48±0.12 87.01±0.11 86.5±0.14 86.04±0.21 85.94±0.18 85.82±0.12

their performance on clean and attacked graphs. To make a
fair comparison, we keep the same training configurations
for all selected architectures. Specifically, we train each ar-
chitecture for 200 epochs with a learning rate of 0.005 and a
weight decay of 5e-4. We use the decrease in classification
accuracy as the measurement and report the results on the
Cora dataset under Mettack (5% perturbation rate), while
other datasets show similar trends. The less the performance
of one architecture decreases, the more robust that architec-
ture is. Fig. 4a and Fig. 4b show boxplots for the robustness

under various architectural designs. For each subplot, the
top figure displays the relationship between the operation
choice and model test accuracy on the clean graph, while
the bottom one shows the operation robustness via accuracy
decreases. We make the following observations.

Intra Message-Passing Layer Design. Fig. 4a shows the
architecture’s robustness for different intra-layer architec-
ture designs. For simplicity, we only consider intra-layer
operations for the first layer. We could see that architectural
design plays a significant role in both architectural accuracy
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Figure 4. The importance of intra-layer and inter-layer designs to GNN robustness. The first row of each picture is the clean test accuracy
(%) for various operations(higher is better), while the second row shows the accuracy decrease (%) under perturbations (lower is better).

and robustness. The use of pre-processing graph structure
mask operations increases GNN models’ robustness but sac-
rifices some accuracy. For the Cora dataset, NFS is the most
effective operation for pre-processing perturbed graph data.
GCN is the most fragile correlation coefficient under Met-
tack. A plausible reason is that Mettack adopts a two-layer
GCN model as the surrogate model to generate adversarial
samples. For neighbor aggregation operations, Sum shows
high accuracy and relatively robust performance. What’s
more, Max is also able to generate some robust architectures.
Besides, combination functions are essential to enhance the
robustness of GNNs as we could see a smaller accuracy de-
crease when using GIN or SAGE operations. Consequently,
it is necessary to distinguish self- and neighbor-messages in
the message-passing.

Inter Message-Passing Layer Design. Our inter-layer de-
signs include skip connections and layer aggregation oper-
ations. We also study how the number of message-passing
layers affects the robustness of GNNs. The results are sum-
marized in Fig. 4b. Skip connections help elevate both model
accuracy and robustness. For the layer aggregation, there are
no obvious differences, and LSTM behaves slightly more
robustly than the other two operations. More interestingly,
increasing the model depth makes GNNs more fragile under
adversarial attacks. A 2-layer GNN shows reasonably good
performance for the Cora dataset.

6. Conclusion and Limitations
In this paper, we propose the first adversarially robust

NAS framework for GNNs. We incorporate graph structure
mask operations into the search space to enhance the defen-
sive ability of GNNs. We also define a robustness metric
that could effectively measure the architecture’s robustness.
Experimental results demonstrate the effectiveness of our
proposed approaches under adversarial attacks. We empiri-
cally analyze the architectural robustness for different opera-
tions, which provides insights into the robustness mechanism
behind GNN architectures.

Meanwhile, the lack of efficiency is a shared issue for
many NAS methods. Since this weakness is not our main
focus, we would like to leave this limitation as a future work.
Societal impacts are discussed in the Appendix.
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on graph neural networks via meta learning. In International
Conference on Learning Representations (ICLR), 2019. 5, 6
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